FLEXALGO

Shraddha Hegde and Ron Bonica

May 2020

Engineering Simplicity

- In Segment Routing (SR), a prefix segment follows the least-cost path from its ingress to its egress
 - An Intradomain Gateway Protocol (IGP) calculates the least-cost path
- •A network operator can
 - Configure multiple prefix segments ending on the same node
 - Use Flexalgo to influence how the IGP calculates the least-cost path for each prefix segment
- •Therefore, each prefix segment can traverse a unique set of links

HOW IT WORKS (IGP MAGIC!!)

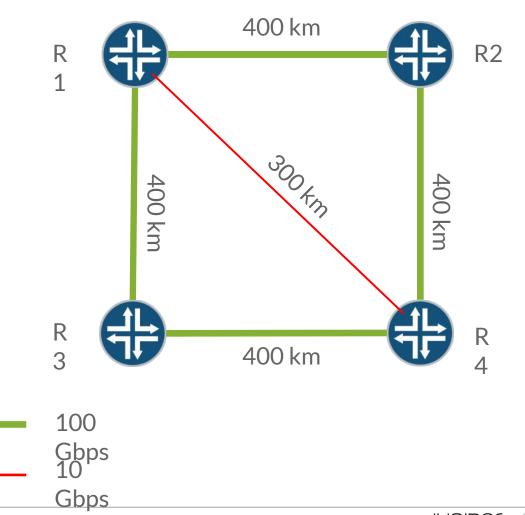
•All nodes advertise information regarding links to which they are attached

- Metrics (IGP, TE, latency-based)
- Administrative groups (colors)
- •Selected nodes advertise Flexible Algorithm Definitions (FAD)
 - Identifier, Metric type, Calculation Type, Constraints
- •A segment endpoint advertises multiple prefix segments
 - Associating each with a FAD
- Each node calculates multiple least-cost paths to the segment endpoint
 - Once for each FAD / prefix segment
- Each least-cost path can traverse a unique set of links

POPULAR USE-CASES

•Low latency / high bandwidth paths

• Path Diversity

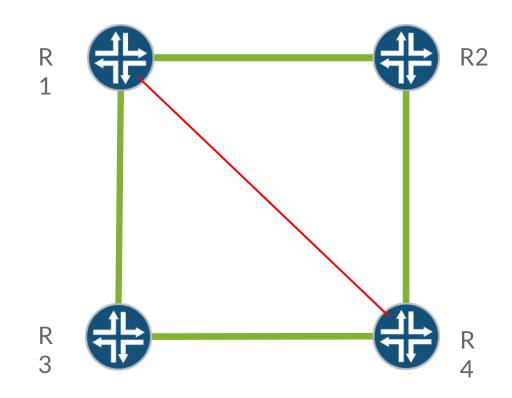


Low Latency / High Bandwidth Paths

- •All flows follow the lowest latency path available
 - In this network, latency is a function of circuit length
- •However, high bandwidth flows must avoid 10G links

LINK ADVERTISEMENTS

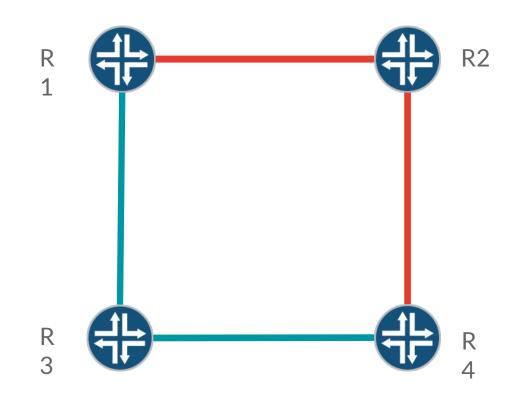
Link	IGP Metric	TE Metric	Administrative Group
R1-R2	400	400	Blue
R1-R3	400	400	Blue
R1-R4	300	300	Red
R2-R4	400	400	Blue
R3-R4	400	400	Blue


FLEXALGO DEFINITIONS (FAD)

FAD	Metric Type	Calculation Type	Constraints
Low Latency	IGP	SPF	Include all
High bandwidth	IGP	SPF	Exclude red

PULLING IT TOGETHER

- R4 advertises Segment A
 - Associates it with the low latency FAD
- R4 advertises Segment B
 - Associates it with the high bandwidth FAD
- R1 calculates the least-cost path to Segment A
 - Next Hop is R4
 - Because low latency FAD includes all links
- R1 calculates the least-cost path to Segment B
 - Next Hop is ECMP (either R2 or R3)
 - Because high bandwidth FAD excludes red links



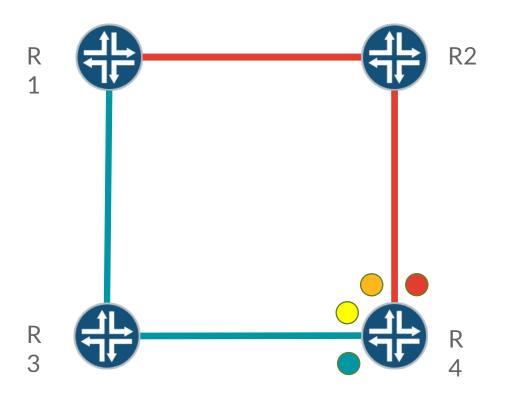
Path Diversity

POLICY

- Red flows traverse red links
 - And no others
- •Orange flows prefer red links
 - But can fail over to blue links
- •Blue flows traverse blue links
 - And no others
- Yellow flows prefer blue links
 - But can fail over to red links

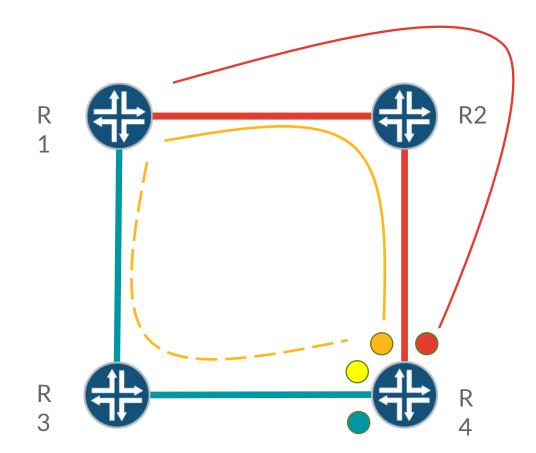
LINK ADVERTISEMENTS

Link	IGP Metric	TE Metric	Administrative Group
R1-R2	200	400	Red
R1-R3	400	200	Blue
R2-R4	200	400	Red
R3-R4	400	200	Blue

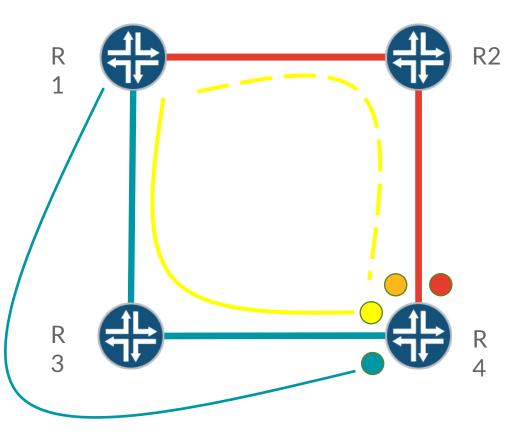

FLEXALGO DEFINITIONS (FAD)

FAD	Metric Type	Calculation Type	Constraints
Red	IGP	SPF	Exclude blue
Orange	IGP	SPF	Include all
Blue	TE	SPF	Exclude red
Yellow	TE	SPF	Include all

PULLING IT TOGETHER


- R4 advertises four prefix segments
 - Segment A associated with the red FAD
 - Segment B associated with the orange FAD
 - Segment C associated with the blue FAD
 - Segment D associated with the yellow FAD
- R1 calculates the least-cost path to R4 four times
 - Once for each FAD / prefix segment

R1 ROUTES TO R4


- Via Prefix Segment A (red)
 - Next Hop is R2
 - No failover
 - Because red FAD excludes blue links
- Via Prefix Segment B (orange)
 - Next Hop is R2
 - •Because orange FAD uses IGP metrics
 - •Because IGP metrics are lower on red links
 - Failover is R3
 - •Because orange FAD includes all links

R1 ROUTES TO R4 (CONTINUED)

- Via Prefix Segment C (blue)
 - Next Hop is R3
 - No failover
 - Because blue FAD excludes red links
- Via Prefix Segment D (yellow)
 - Next Hop is R3
 - Because orange FAD uses TE metrics
 - •Because TE metrics are lower on blue links
 - Failover is R2
 - •Because yellow FAD includes all links

Conclusion

• Many networks require only course-grained TE

- As in the use-cases described above

•Benefits of deploying Flexalgo into such networks

- Each SR path is reduced to a single segment
- No need to specify TE policy on a controller or on each segment egress node
- Operational simplicity

THANK YOU

Engineering Simplicity